


## Chemistry Olympiad Training for Secondary School Level - Part Two

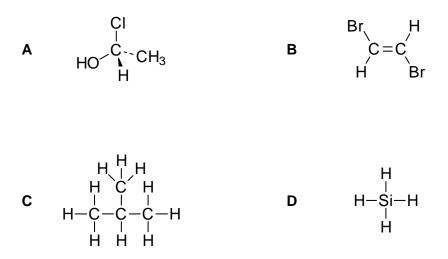
1. Study the three chemical reactions shown below:

$$\begin{array}{rcl} \mathsf{H}^{+} \ + \ :\mathsf{NH}_{3} \ \rightarrow \ (\mathsf{H}:\mathsf{NH}_{3})^{+} \\ \\ \mathsf{AlCI}_{3} \ + \ :\mathsf{CI}_{2} \ \rightarrow \ (\mathsf{CI}:\mathsf{AlCI}_{3})^{-} \ + \ \mathsf{CI}^{+} \\ \\ \mathsf{BF}_{3} \ + \ :\mathsf{NH}_{3} \ \rightarrow \ \mathsf{F}_{3}\mathsf{B}:\mathsf{NH}_{3} \end{array}$$

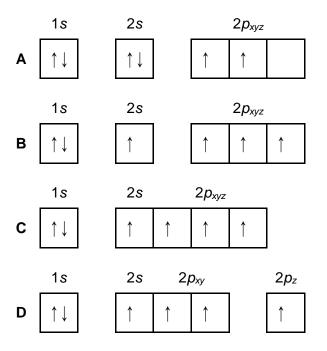
What do all three reactions have in common?

- **A** They are all precipitation reactions.
- **B** They are all redox reactions.
- **C** They are reactions of Lewis acids and bases.
- **D** They are reactions of Brønsted-Lowry acids and bases.
- 2. Which one of the four carboxylic acids shown below is the strongest acid?



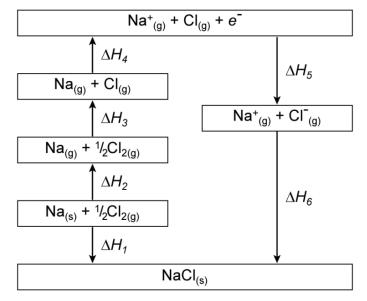

- **3.** The enthalpy change, under standard conditions, for which one of the reactions below would be equal to the  $\Delta H^{\circ}_{f}$  of NaOH (s)?

  - **B** Na(s) +  $\frac{1}{2}O_2(g) + \frac{1}{2}H_2(g) \rightarrow NaOH(s)$


**C** Na(s) + 
$$\frac{1}{2}H_2O_2(I) \rightarrow NaOH(s)$$

**D** Na<sup>+</sup>(aq) + OH<sup>-</sup>(aq)  $\rightarrow$  NaOH(s)

4. Which one of the following organic compounds will rotate plane polarised light?




5. Which one of the following electronic arrangements shows  $sp^3$  hybridisation in carbon?



- **6.** Which calcium compound is not appreciably more soluble in 0.1 mol dm<sup>-3</sup> hydrochloric acid than it is in pure water?
  - A Limestone, CaCO<sub>3</sub>
  - B Slaked lime, Ca(OH)<sub>2</sub>
  - $\boldsymbol{C} \quad Gypsum, \, CaSO_4{\cdot}2H_2O$
  - D Hydroxyapatite, Ca<sub>5</sub>(OH)(PO<sub>4</sub>)<sub>3</sub>

**7.** The Born-Haber cycle shown below represents the formation of sodium chloride from sodium and chlorine:



Which of the enthalpy changes ( $\Delta H$ ) is correctly paired with its description?

- **A**  $\Delta H_1$  is the enthalpy change of combustion for sodium chloride.
- **B**  $\Delta H_4$  is the first electron affinity for sodium.
- **C**  $\Delta H_5$  is the first ionisation energy for chlorine.
- **D**  $\Delta H_6$  is the lattice enthalpy for sodium chloride.
- **8.** At the molecular level, the factor that determines whether a substance will be a solid, liquid or gas is the balance between the...
  - A Kinetic energies of the molecules and their intermolecular forces.
  - **B** Potential energies of the molecules and their intermolecular forces.
  - **C** Kinetic energies of the molecules and their intramolecular forces.
  - **D** Potential energies of the molecules and their intramolecular forces.
- **9.** What is the oxidation state of C in methanal, CH<sub>2</sub>O?

| Α | -2 | В | 0  |
|---|----|---|----|
| С | +2 | D | +4 |

- **10.** Which molecule is correctly matched with its shape as predicted by as predicted by valence shell electron pair repulsion theory (VSEPRT)?
  - A CH<sub>4</sub> octahedral
  - **B** NH<sub>3</sub> linear
  - $\label{eq:constraint} \textbf{C} \quad \mathsf{PCI}_5 \qquad \text{trigonal bipyramidal}$
  - **D** SF<sub>6</sub> tetrahedral

**11.** A sulfur atom in the ground state has the electronic configuration:

 $1s^2 2s^2 2p^6 3s^2 3p^4$ 

How many orbitals are occupied by at least one electron?

- A 5 B 9 C 11 D 16
- **12.** The molecules in a sample of pure liquid dichloromethane, CH<sub>2</sub>Cl<sub>2</sub>, experience which of the following intermolecular forces:
  - I van der Waals forces
  - II dipole-dipole forces
  - III Hydrogen bonds
  - AI onlyBII onlyCI and II onlyDI, II and III
- **13.** What is the equilibrium expression for the reaction given below?

$$2C(s) + O_2(g) \rightleftharpoons 2CO(s)$$

**A** 
$$K = \frac{2[CO]}{2[C] \times [O_2]}$$
 **B**  $K = \frac{2[CO]}{[O_2]}$ 

$$\mathbf{C} \qquad \mathcal{K} = \frac{[\mathrm{CO}]^2}{[\mathrm{C}]^2 \times [\mathrm{O}_2]} \qquad \qquad \mathbf{D} \qquad \mathcal{K} = \frac{[\mathrm{CO}]^2}{[\mathrm{O}_2]}$$

14. Consider the following reactions:

$$I \quad 2NO_2(g) \rightarrow N_2(g) + 2O_2(g)$$

II  $2IBr(g) \rightarrow I_2(s) + Br_2(l)$ 

For which reaction is  $\Delta S^{\circ} < 0$ ?

- A I only B II only
- C Both I and II D Neither I nor II

**15.** Given chemical equations for these reactions:

| $S(s) \ + \ O_2(g) \ \rightarrow \ SO_2(g)$    | $\Delta H^{\circ}$ = –296.8 kJ mol <sup>-1</sup> |
|------------------------------------------------|--------------------------------------------------|
| $H_2(g) \ + \ {}^1\!/_2O_2(g) \ \to \ H_2O(I)$ | $\Delta H^{\circ} = -285.8 \text{ kJ mol}^{-1}$  |
| $H_2(g) + S(s) \rightarrow H_2S(g)$            | $\Delta H^{\circ} = -20.6 \text{ kJ mol}^{-1}$   |

What is the value of  $\Delta H$  for the reaction given below?

|   |                              | $2H_2S(g) + 3O_2(g) \rightarrow 2H_2O(I) + 2SO_2(g)$ |
|---|------------------------------|------------------------------------------------------|
| Α | –603.2 kJ mol <sup>-1</sup>  | <b>B</b> –562.0 kJ mol <sup>-1</sup>                 |
| С | –1206.4 kJ mol <sup>–1</sup> | <b>D</b> –1124.0 kJ mol <sup>-1</sup>                |

- **16.** What property of the oxygen atom is represented by the equation  $O(g) + e^- \rightarrow O^-(g)$ ?
  - A Electronegativity.
  - **B** First electron affinity.
  - **C** First ionisation energy.
  - D Lattice energy.
- 17. Which one of the following isoelectronic species has the largest atomic radius?

| Α | K <sup>+</sup>  | В | Ca <sup>2+</sup> |
|---|-----------------|---|------------------|
| С | P <sup>3-</sup> | D | S <sup>2–</sup>  |

18. Chemical A reacts with chemical B to form chemical C according to the reaction given below:

$$\boldsymbol{\mathsf{A}}(g) \ + \ \boldsymbol{\mathsf{B}}(g) \ \rightarrow \ \boldsymbol{\mathsf{C}}(g)$$

The data below was obtained for the reaction between **A** and **B**. What is the rate equation for this reaction?

| Experiment | [ <b>A</b> ] / mol dm⁻³ | [ <b>B</b> ] / mol dm⁻³ | Initial Rate of Reaction<br>/ mol dm <sup>-3</sup> s <sup>-1</sup> |
|------------|-------------------------|-------------------------|--------------------------------------------------------------------|
| 1          | 0.10                    | 0.10                    | 6.5 × 10 <sup>−5</sup>                                             |
| 2          | 0.20                    | 0.10                    | $2.6 \times 10^{-4}$                                               |
| 3          | 0.10                    | 0.20                    | 6.5 × 10 <sup>−5</sup>                                             |

- **A** Rate =  $k \times [A]$
- **C** Rate =  $k \times [A]^2$

**B** Rate =  $k \times [A] \times [B]$ 

**D** Rate =  $\mathbf{k} \times [\mathbf{A}]^2 \times [\mathbf{B}]$ 

**19.** Values for some standard electrode potentials ( $E^{\circ}$ ) are given in the table below:

| Half-reaction                            | <i>E</i> ° / V |
|------------------------------------------|----------------|
| $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ | -0.760         |
| $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ | -0.744         |
| $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ | -0.409         |

Use the  $E^{\circ}$  values in the table to determine which one of the following reactions will give the highest potential difference in a simple voltaic cell.

**A**  $3Zn^{2+}(aq) + 2Cr(s) \rightarrow 3Zn(s) + 2Cr^{3+}(aq)$ 

- $\textbf{B} \quad 3Zn(s) \ + \ 2Cr^{3+}(aq) \ \rightarrow \ 3Zn^{2+}(aq) \ + \ 2Cr(s)$
- **D** Zn(s) + Fe<sup>2+</sup>(aq)  $\rightarrow$  Zn<sup>2+</sup>(aq) + Fe(s)

20. The ideal gas equation is given below:

$$PV = nRT$$
  
R = gas constant = 8.314 JK<sup>-1</sup>mol<sup>-1</sup>  
 $n$  = amount of gas / mol  
f oxygen gas occupy at a pressure

What volume does 64.0 g of oxygen gas occupy at a pressure of 101 000 pa and a temperature of 100  $^\circ\text{C}?$ 

**Note:**  $A_{\rm r}[{\rm O}] = 16.0$ 

| Α | 0.0165 m <sup>3</sup> | В | 0.0614 m <sup>3</sup> |
|---|-----------------------|---|-----------------------|
| С | 0.123 m <sup>3</sup>  | D | 0.0329 m <sup>3</sup> |

The Periodic Table of the Elements

|                |                         |                            |                 |                |                    |                    |               | G              | Group           |                  |                 |                  |                        |                  |                |                 |                   |
|----------------|-------------------------|----------------------------|-----------------|----------------|--------------------|--------------------|---------------|----------------|-----------------|------------------|-----------------|------------------|------------------------|------------------|----------------|-----------------|-------------------|
|                | I                       |                            |                 |                |                    |                    |               |                |                 |                  |                 | III              | N                      | Λ                | N              | NI              | 0                 |
|                |                         |                            |                 |                |                    |                    | + I           |                |                 |                  |                 |                  |                        |                  |                |                 | 4<br>He           |
|                |                         |                            |                 |                |                    |                    | hydrogen<br>1 |                |                 |                  |                 |                  |                        |                  |                |                 | helium<br>2       |
| 7              | 6                       | <b> </b>                   |                 |                |                    |                    |               |                |                 |                  |                 | 11               | 12                     | 14               | 16             | 19              | 20                |
| C.             | Be                      |                            |                 |                |                    |                    |               |                |                 |                  |                 | В                | υ                      | z                | 0              | IL.             | Ne                |
| lithium<br>3   | beryllium<br>4          |                            |                 |                |                    |                    |               |                |                 |                  |                 | 5 boron          | carbon<br>6            | nitrogen<br>7    | oxygen<br>8    | fluorine<br>9   | 10                |
| 23             | 24                      | T                          |                 |                |                    |                    |               |                |                 |                  |                 | 27               |                        | 31               | 32             | 35.5            | 40                |
| Na             | Mg                      |                            |                 |                |                    |                    |               |                |                 |                  |                 | AI               | Si                     | Р                |                |                 | Ar                |
| sodium<br>11   | magnesium<br>12         | E                          |                 |                |                    |                    |               |                |                 |                  |                 | aluminium<br>13  | silicon<br>14          | phosphorus<br>15 | sulfur<br>16   | chlorine<br>17  | argon<br>18       |
| 39             | 40                      | 45                         | 48              | 51             | 52                 | 55                 | 56            | 59             | 59              | 64               | 65              | 70               | 73                     | 75               |                |                 | 84                |
| ¥              | Ca                      | _                          | F               | >              |                    | Mn                 | Fe            | ပိ             | ïz              | Cu               | Zn              | Ga               | Ge                     |                  | Se             | Br              | Kr                |
| potassium      | calcium                 | scandium                   | titanium        | vanadium       |                    | chromium manganese | 90            | cobalt         | nickel          | copper           | zinc            | gallium          | germanium              | arsenic          | selenium       | bromine         | krypton           |
| OF             | 00                      | 00                         | 44              | C7             | 24<br>06           | - C                | 101           | 103            | 106             | 100              | 110             | 115              | 110                    | 100              | 100            | 101             | 124               |
| 20             | 8 0                     | <sup>0</sup> >             | 75              | CP 4N          | OP ON              | I F                |               | 3              |                 | 001              | 21              | 2                | 20                     | 40               | 120<br>T       | 171             | No.               |
| 2              | 5                       |                            | 3               |                | DINI               |                    | _             |                |                 | הל               | 3               | 111              | 5                      | 20               | 2              | 1               | 2C                |
| 37             | 38                      | 39<br>39                   | ZICCONIUM<br>40 | 41             | molybdenu<br>m     | technetium<br>43   | 44            | 45             | palladium<br>46 | silver<br>47     | cadmium<br>48   | 49               | 50 III                 | antimony<br>51   | tellunum<br>52 | 53              | 54 xenon          |
| 133            | 137                     | 139                        | 178             | 181            | 184                | 186                | 190           | 192            | 195             | 197              | 201             | 204              | 207                    | 209              | 1              | 1               | 1                 |
| Cs             | Ba                      | La                         | Ŧ               | Ta             | M                  | Re                 | Os            | Ir             |                 | Au               | Hg              | TI               | Pb                     | Bi               | Po             | At              | Rn                |
| caesium<br>55  | barium<br>56            | 57 * 57                    | hafnium<br>72   | tantalum<br>73 | tungsten<br>74     | rhenium<br>75      | osmium<br>76  | iridium<br>77  | platinum<br>78  | 79<br>79         | mercury<br>80   | thallium<br>81   | lead<br>82             | bismuth<br>83    | polonium<br>84 | astatine<br>85  | radon<br>86       |
| 1              | 1                       | 1                          |                 |                |                    |                    |               |                |                 |                  | 2               |                  |                        | 0                |                |                 |                   |
| Ľ.             | Ra                      | Ac                         |                 |                |                    |                    |               |                |                 |                  |                 |                  |                        |                  |                |                 |                   |
| francium<br>87 | 88                      | adinium<br>89 †            |                 |                |                    |                    |               |                |                 |                  |                 |                  |                        |                  |                |                 |                   |
| *58-71 L       | anthano                 | *58-71 Lanthanoid series   |                 |                |                    |                    |               |                |                 |                  |                 |                  |                        |                  |                |                 |                   |
| +90-103        | †90-103 Actinoid series | series                     |                 |                |                    |                    |               |                |                 |                  |                 |                  |                        |                  |                |                 |                   |
|                |                         |                            | 8               | 140            | 141                | 144                | 1             | 150            | 152             | 157              | 159             | 162              | 165                    | 167              | 169            | 173             | 175               |
|                |                         |                            |                 | Ce             | Ъ                  | PN                 | Pm            | Sm             | Ш               | Gd               | Tb              | D                | Р                      | ш                |                | γb              | Lu                |
|                |                         |                            |                 | cerium<br>58   | praseodymium<br>59 | neodymium<br>60    | 59 60 61 61   | samarium<br>62 | europium<br>63  | gadolinium<br>64 | terbium<br>65   | dysprosium<br>66 | holmium<br>67          | erbium<br>68     | thulium<br>69  | ytterbium<br>70 | Iutetium<br>71    |
| Key a          |                         | a = relative atomic mass   |                 | 232            | 1                  | 238                | 1             |                | I               | 1                | 1               | 1                |                        |                  | 1              | 1               | I                 |
| ×              |                         | X = atomic symbol          |                 | 막              | Pa                 | D                  | dN            | Pu             |                 | Cm               | Ŗ               |                  | Es                     |                  | pW             |                 | ٦                 |
| 4              | 015                     | b = proton (atomic) number |                 | thorium        | protactinium<br>01 | uraniun            | n neptunium   | plutonium      | americium       | curium           | berkelium<br>07 |                  | califomium einsteinium | 100              | mendelevium    | nobelium        | lawrencium<br>102 |
| 2              | ٦                       |                            | 1               | 20             | 21                 |                    | 20            | 5              |                 | 20               | 21              | 20               | 22                     | 100              | 101            | IUE             | 100               |

## Answers

- 1. D
- 2. B
- 3. B
- 4. A
- 5. <mark>C</mark>
- 6. C
- 7. D
- 8. <mark>A</mark>
- 9. <mark>B</mark>
- 10. <mark>C</mark>
- 11. <mark>B</mark>
- 12. C
- 13. D
- 14. <mark>B</mark>
- 15. <mark>D</mark>
- 16. B
- 17. C
- 18. C
- 19. D 20. B

8