NANYANC			Name: ()
Contraction of the second	and a second	Chem!stry	Class:	
· 表供站样	စ်ခုံစုပ်ပ		Date: / /	

Chemistry Olympiad Training for Secondary School Level – Part Four

1. The K_a value of an acid is given by the equation:

$$\mathcal{K}_{a} = \frac{[H^{+}] \times [A^{-}]}{[HA]}$$

Which one of the following acids is the strongest acid?

Α	Oxalic acid	$H_2C_2O_4$	$Ka = 5.90 \times 10^{-2}$
В	Hydrofluoric acid	HF	$Ka = 7.20 \times 10^{-4}$
С	Ethanoic acid	CH₃COOH	<i>K</i> a = 1.76 × 10 ^{−5}
D	Phenol	C ₆ H₅OH	$Ka = 1.60 \times 10^{-10}$

2. The structural formula of but-3-yn-1-ene is given below:

How many π -bonding electrons are there in a single molecule of but-3-yn-1-ene?

3. Phenolphthalein is a common indicator that is used for acid-base titrations. Phenolphthalein's percentage composition by mass is given below:

What is the empirical formula of phenolphthalein?

- **A** C₇H₃O₂ **B** C₁₀H₇O₂
- **C** $C_{15}H_4O_2$ **D** $C_5H_2O_3$

4. Which molecule contains both an amine and a ketone?

- **5.** Tellurium has a lower atomic number than iodine, but it has a higher relative atomic mass than iodine. This is because:
 - A Tellurium has more electrons than iodine.
 - **B** Tellurium has more isotopes than iodine.
 - **C** One of the isotopes of tellurium has more neutrons than one of the isotopes of iodine.
 - D The main isotopes of tellurium have more nucleons than the main isotopes of iodine.
- 6. How many electrons are transferred from 10I⁻ to 2MnO₄⁻ ions in the following redox reaction?

$$2 \text{ MnO}_4(aq) + 16 \text{ H}^+(aq) + 10 \text{ I}^- \rightarrow 2 \text{ Mn}^{2+}(aq) + 5 \text{ I}_2(aq) + 8 \text{ H}_2O(l)$$

- A 5 B 8 C 10 D 16
- 7. Gas X dissociates on heating to set up the following equilibrium:

$$X(g) \rightleftharpoons Y(g) + Z(g)$$

A quantity of gas **X** was heated at a constant pressure, *p*, at a certain temperature. The equilibrium partial pressure of **X** was found to be 1/7 p. What is the equilibrium constant, K_p , at this temperature?

- **A** ${}^{6}/_{7} p$ **B** ${}^{9}/_{7} p$
- С 6*р* **D** 9*р*

8. Thin layer chromatography (TLC) is used to separate mixtures of compounds based upon the different polarities of the compounds. This is done based on their interactions with the polar stationary phase and the less polar mobile phase.

A mixture of compounds is placed on the TLC plate at the position marked "X". Through capillary attraction, solvent **A** moves up the plate until it reaches the point shown. The plate is then dried, rotated 90° and the process repeated using solvent **B** to give the following result:

Which of the following plates would be the one that you would expect to obtain after using **only** solvent **A** as the mobile phase?

9. A hypergolic fuel system consisting of monomethylhydrazine, CH₃NHNH₂, and dinitrogen tetroxide, N₂O₄, (both liquids) is commonly used to propel space vehicles. The two reactants are combined stoichiometrically so that CO₂, H₂O and N₂ are the only products formed (all gases under the same reaction conditions). How many moles of gas are produced from 100 mol of CH₃NHNH₂?

Α	125	В	225
С	400	D	625

10. Pure water undergoes self-ionization according to the equation:

 $H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$

The equilibrium constant for the reaction is:

 1.0×10^{-14} at 25°C and 5.5×10^{-13} at 100°C.

Which one of the following statements is correct?

- **A** At 100°C, the pH of pure water is less than 7.0, but the $[H^+] = [OH^-]$.
- **B** At 100°C, the pH of pure water is less than 7.0, and therefore $[H^+] > [OH^-]$.
- **C** At 100°C, the pH of pure water is greater than 7.0, and therefore $[OH^-] > [H^+]$.
- **D** At 100°C, the pH of pure water must be 7.0, and the $[H^+] = [OH^-]$.
- 11. In which one of the following compounds does manganese exist in the lowest oxidation state?

Α	Mn ₂ O ₇	В	Mn(CH ₃ COO) ₂ ·4H ₂ O
С	KMnO₄	D	MnO₂F

12. The enthalpy change of formation (ΔH_f°) for a species at 298 K is defined as the enthalpy change that accompanies the formation of one mole of a substance from its constituent elements in their standard states. Which one of the following species has $\Delta H_f^\circ = 0$ kJ mol⁻¹?

Α	H ₂ O(I)	В	Na(s)
С	CO ₂ (g)	D	O ₃ (g)

13. A Chemist requires 16.0 mol of liquid ethanol, C₂H₅OH, for a chemical reaction. What volume of ethanol should she use? The density of ethanol is 0.789 g cm⁻³.

Α	0.581 dm ³	В	0.690 dm ³
С	0.934 dm ³	D	1.88 dm ³

14. 2,4,6-trinitrotoluene (TNT, C₇H₅N₃O₆) can be used in synthetic organic chemistry, however, its use is limited because of its highly explosive nature. Upon detonation, TNT decomposes as a mixture of the following reactions:

When 20 mol of TNT was exploded with complete conversion into products, 30 mol of hydrogen gas was produced. How many moles of carbon monoxide were also produced?

- A 28 B 49
- **C** 72 **D** 100

- **15.** For a spontaneous reaction to occur at constant temperature and pressure, the Gibbs free energy (ΔG) must be negative. The Gibbs free energy combines two thermodynamic parameters into the Gibbs equation: $\Delta G = \Delta H T\Delta S$, where ΔH is the change in enthalpy and ΔS is the change in entropy. What conditions of ΔH and ΔS for a chemical reaction will always give a spontaneous reaction?
 - **A** ΔH positive, ΔS positive.
 - **B** ΔH positive, ΔS negative.
 - **C** ΔH negative, ΔS positive.
 - **D** ΔH negative, ΔS negative.
- **16.** Which one of the following species is both a hydrogen-bond donor and a hydrogen-bond acceptor?
 - A
 CH₃OCH₃
 B
 HI

 C
 CH₃OH
 D
 CH₄
- **17.** The most common batteries used in cars are lead-acid batteries that can be discharged and recharged according to the following equation:

$$Pb(s) + PbO_2(s) + 2 H_2SO_4(aq) \stackrel{discharge}{\underset{recharge}{\leftarrow}} 2 PbSO_4(aq) + 2 H_2O(l)$$

When discharging, which species is the reducing agent?

- A
 Pb(s)
 B
 PbO2(s)

 C
 SO42-(aq)
 D
 PbSO4(aq)
- **18.** By referring to the standard reduction potentials below, which one of the species listed is the best oxidising agent?

С	Fe ²⁺ (aq)	D Ni(s)
Α	Cd(s)	B Cu ²⁺ (aq)
		$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s) E^{\circ} = -0.44 V$
		$Cd^{2+}(aq) + 2e^{-} \rightleftharpoons Cd(s) E^{\circ} = -0.40 V$
		$Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s) E^{\circ} = -0.23 V$
		$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s) E^{\circ} = +0.34 V$

19. Which one of the following species does **not** have eight valence electrons surrounding the central atom?

Α	CCI ₄	В	NH_4^+
~	05	-	

C OF₂ **D** BCl₃

20. Which one of the following is not an isomer of the molecule shown below?

Α

В

The Periodic Table of the Elements

								25	dnc								
_	=												N	>	N	VII	0
						10 0	1 H hydrogen										4 He helium
7 Li lithium	9 Be beryllium											11 boron	12 C carbon	14 N nitrogen	16 O oxygen	19 F fluorine	20 Ne
3 23	4 24										21	5 27	6 28	31	8 32	9 35.5	10 40
sodium 11	Mg magnesium 12					_					10	Al aluminium 13	Si silicon 14	P phosphorus 15	S sulfur 16	Cl chlorine 17	Ar argon 18
39	40	45	48	51	52	55	56	59	59	64	65	20	73	75	62	80	84
K	Ca	Sc	Ti	V	Cr	Mn	Fe	CO	Nickel	Cu	Zn	Ga	Ge	AS	Se	Br	Kr
19	20	21 2	2	23	24	25	26	27	28	29	30	31	32	33	34	35	36 36
85	88	89	91	93	96	1	101	103	106	108	112	115	119	122	128	127	131
ď	S	7	Zr	qN	Mo	Tc	Ru	R	Pd	Ag	B	In	Sn	Sb	Te	Ι	Xe
rubidium 37	strontium 38	yttrium 2 39 4	zirconium 10	niobium 41	molybdenu m 42	technetium 43	ruthenium 44	45	palladium 46	silver 47	cadmium 48	indium 49	50 tin	antimony 51	tellurium 52	iodine 53	54 xenon
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209	1	1	j,
Cs	Ba	La	Ŧ	Ta	M	Re	Os	Ч	Ŧ	Au	ВH	11	Pb	Bi	Po	At	Rn
caesium 55	barium 56	57 * 7	hafnium 2	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	79 gold	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
1	1	1															
Fr francium 87	Ra radium 88	Ac adinium 89 †															
*58-71	anthanoi	id series															
190-10	3 Actinoid	series	ŀ														
			2	140	141 Pr	44 44	- ma	150 Sm	152 Fil	157 Gd	159 Th	162 Dv	165 Ho	167 Fr	169 Tm	173 Yh	175
				cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	Iutetium 71
Kev	a a = re	elative atomic r	mass	232	1	238	1	1	1	1	1	1	1	1	1	1	1
	X = ai	tomic symbol		Th	Pa	n	Np	Pu	Am	Cm	BK	5	Es	Fm	pM	No	۲
` _	p = p	roton (atomic)	number	thorium	protactinium 01	uranium 0.0	neptunium 03	plutonium	americium	curium	berkelium a7	califomium	einsteinium	fermium 100	mendelevium 101	nobelium 100	lawrencium 103
2				20	2	34	22	5	20	20	21	20	22	201	101	104	100

7

Answers

1.	Α	
2.	В	
3.	В	
4.	В	
5.	D	
6.	С	
7.	В	
8.	С	
9.	D	
		$4CH_3NHNH_2(g) + 5N_2O_4(g) \rightarrow 4CO_2(g) + 12H_2O(g) + 9N_2(g)$
10.	Α	
11.	В	
12.	В	
13.	С	
14.	D	
15.	С	
16.	С	
17.	Α	
18.	В	
19.	D	
20.	D	