

Sc!ence

Name:		(()
-------	--	---	-----

Class:

Date: / /

Resistors in Series and Parallel - Introduction

Question 1 - Resistors in Series:

• Battery = 12 V • $R_1 = 20 \Omega$ • $R_2 = 50 \Omega$ • $R_3 = 80 \Omega$

Ohm's Law: $V = I \times R$

Effective resistance of circuit = sum of resistors in series: $R_e = R_1 + R_2 + R_3$ All resistors (components) in a series circuit have the same current (I) flowing through them The potential difference (V) splits between the resistors (components) in a series circuit So, for the above parallel circuit, e.m.f. of battery = $V_1 + V_2 + V_3$

- (a) Calculate the effective resistance, Re, of the circuit.
- **(b)** Calculate the current flowing through the circuit, *i.e.* the reading on A_1 .
- (c) Calculate the potential difference across R_1 , R_2 and R_3 , *i.e.* the readings on V_1 , V_2 and V_3

Question Two - Resistors in Parallel

• Battery = 12 V • R₁ = 20
$$\Omega$$
 • R₂ = 50 Ω • R₃ = 80 Ω Ohm's Law: V = I \times R

Effective resistance of a parallel circuit: $^{1}/_{Re} = ^{1}/_{R1} + ^{1}/_{R2} + ^{1}/_{R3}$

The current (I) splits between the resistors (components) in a parallel circuit

So, for the above parallel circuit, reading on $A_1 = A_2 + A_3 + A_4$

All resistors (components) in a parallel circuit have the same potential difference (V) across them

- (a) Calculate the effective resistance, Re, of the circuit.
- **(b)** Calculate the current flowing through the circuit, *i.e.* the reading on A₁.
- (c) State the potential difference across R_1 , R_2 and R_3 , *i.e.* the readings on V_1 , V_2 and V_3 .
- (d) Calculate the current across R₁, R₂ and R₃, *i.e.* the readings on A₁, A₂ and A₃.

.....

Question Three - Resistors in Parallel

• Battery = 8.0 V •
$$R_1$$
 = 10 Ω • R_2 = 20 Ω • R_3 = 40 Ω Ohm's Law: V = I \times R

Effective resistance of a parallel circuit: $^{1}/_{Re} = ^{1}/_{R1} + ^{1}/_{R2} + ^{1}/_{R3}$ The current (I) splits between the resistors (components) in a parallel circuit So, for the above parallel circuit, reading on $A_{1} = A_{2} + A_{3} + A_{4}$

All resistors (components) in a parallel circuit have the same potential difference (V) across them

- (a) Calculate the current through the main circuit (reading on A_1) when only switch S_1 is closed.
- (b) (i) Calculate the effective resistance through the circuit when only switch S₁ and switch S₂ are closed.
 - (ii) Calculate the current through the main circuit (reading on A₁) when only switch S₁ and switch S₂ are closed.
- (c) (i) Calculate the effective resistance through the circuit when switch S_1 , switch S_2 and switch S_3 are all closed.
 - (ii) Calculate the current through the main circuit (reading on A_1) when switch S_1 , switch S_2 and switch S_3 are all closed.
- (d) Calculate the readings on A_2 , A_3 , A_4 when switch S_1 , switch S_2 and switch S_3 are all closed.
- **(e)** How does the effective resistance of the circuit, R_e, change as the switches are closed and the number of resistors in parallel increases?
- (f) How does the current through the main circuit (reading on A₁) change as the switches are closed and the number of resistors in parallel increases?

• Scan the QR code below for the answers to this assignment.

http://www.nygh.sg/lower_secondary_science/sec_two_science/sec_two_physics/resistors_introduction_answers.pdf