
A Summary of Series and Parallel Circuits

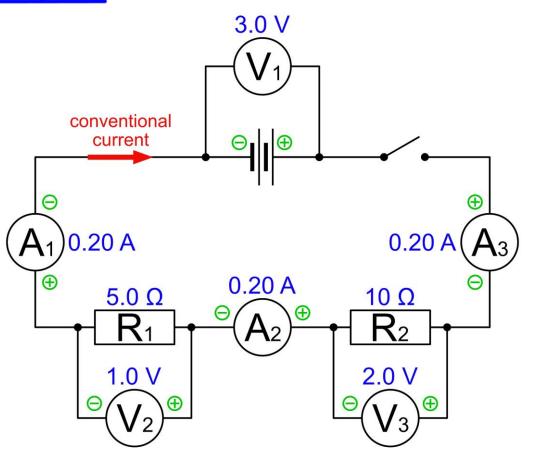
IR

A Summary of Series and Parallel Circuits

General Rules for a Series Circuit:

The current is the same at all points in the circuit.

i.e.
$$A_1 = A_2 = A_3$$


• The sum of the potential differences (p.d.) across the resistors equals the electromotive force (e.m.f.) of the battery.

i.e.
$$V_1 = V_2 + V_3$$

 The effective resistance (R_e) through the circuit equals the sum of the resistors.

i.e.
$$R_e = R_1 + R_2$$

If an additional resistor, R₃, is introduced in series, then the effective resistance (R_e) will *increase* (R_e = R₁ + R₂ + R₃) while the current through the circuit will *decrease* (I = ^V/_{Re}).

IR

A Summary of Series and Parallel Circuits

3.0 V conventional current 0.20 A 0.20 A 0.20 A 5.0 Ω 10 Ω 2.0 V

Calculations for this Circuit:

- effective resistance = $R_e = R_1 + R_2$ $R_e = 5.0 \Omega + 10 \Omega = 15 \Omega$
- current through circuit (readings on A₁, A₂ and A₃) $I = \frac{V}{R} = \frac{3.0 \text{ V}}{15.0} = 0.20 \text{ A}$
 - potential difference across R₁ (reading on V₂) $V_2 = I \times R_1 = 0.20 \text{ A} \times 5.0 \Omega = 1.0 \text{ V}$
 - potential difference across R_2 (reading on V_3) $V_3 = I \times R_2 = 0.20 \text{ A} \times 10 \Omega = 2.0 \text{ V}$
- Note: The sum of the potential differences across the two resistors, R₁ and R₂, equals the electromotive force of the battery.

i.e.
$$1.0 \text{ V} + 2.0 \text{ V} = 3.0 \text{ V}$$

A Summary of Series and Parallel Circuits 3.0 V conventional current 0.90 A 0.90 A 0.60 A 5.0Ω 3.0 V $0.30\,A$ 10Ω

General Rules for a Parallel Circuit:

 The current divides to flow through both resistors. The current through the main circuit equals the sum of the currents through the branches of the circuit.

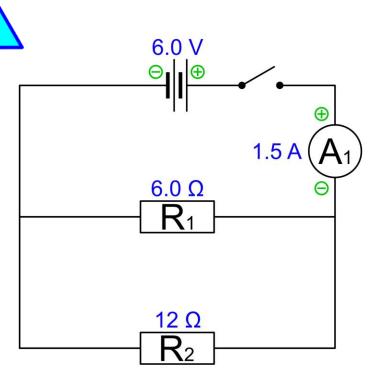
i.e.
$$A_1 = A_2 = A_3 + A_4$$

 The potential difference (p.d.) through the individual resistors is the same as the electromotive force (e.m.f.) of the battery.

i.e.
$$V_1 = V_2 = V_3$$

- The effective resistance (R_e) through the circuit is given by the equation: $\frac{1}{R_e} = \frac{1}{R_1} + \frac{1}{R_2}$
- If an additional resistor, R₃, is introduced in parallel, then the effective resistance (R_e) will decrease $(\frac{1}{Re} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3})$ while the current through the main circuit (A₁ and A₂) will increase ($I = \frac{V}{Re}$).
- Note: The effective resistance (R_e) is *smaller* than value of the *smallest resistor* in the parallel circuit.

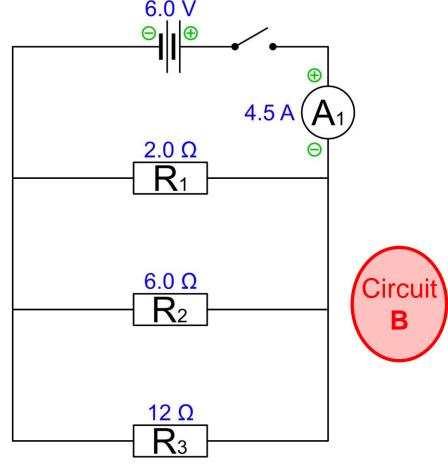
i.e. if
$$R_1 < R_2$$
, then $R_e < R_1$


A Summary of Series and Parallel Circuits 3.0 V conventional current 3.0 V 0.90 A 0.90 A 0.60 A 5.0Ω 3.0 V $0.30\,A$ 10 Ω

Calculations for this Circuit:

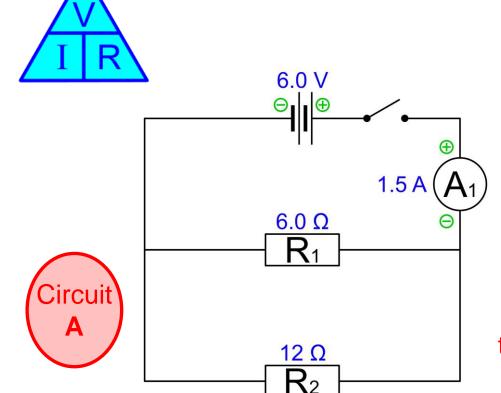
• effective resistance =
$$^{1}/_{Re}$$
 = $^{1}/_{R1}$ + $^{1}/_{R2}$ $^{1}/_{Re}$ = $^{1}/_{5.0~\Omega}$ + $^{1}/_{10~\Omega}$ $^{1}/_{Re}$ = 0.20 + 0.10 $^{1}/_{Re}$ = 0.30 R_{e} = $^{1}/_{0.30}$ R_{e} = 3.33 Ω or 3.3 Ω to 2 s.f.

- potential difference across R₁ (reading on V₂) and R_2 (reading on V_3) $V_1 = V_2 = V_3$ so $V_2 = 3.0 \text{ V}$ and $V_2 = 3.0 \text{ V}$
- current through main circuit (readings on A₁ and A₂) $I = \frac{V}{R} = \frac{3.0 \text{ V}}{3.33 \Omega} = 0.90 \text{ A}$
 - current through $A_3 = I = \frac{V_2}{R_1} = \frac{3.0 \text{ V}}{5.0 \Omega} = 0.60 \text{ A}$
 - current through $A_4 = I = \frac{V_3}{R_2} = \frac{3.0 \text{ V}}{10.0} = 0.30 \text{ A}$
- Note: $A_3 + A_4 = 0.6 A + 0.3 A = 0.90 A$ which is the current through the main circuit, A₁ & A₂


A Summary of Series and Parallel Circuits

Important to Note #1:

 For a parallel circuit, the value of the effective resistance, R_e, is always smaller than the value of the smallest resistor.


> For circuit **A**: $4.0 \Omega < 6.0 \Omega$ For circuit **B**: $1.3 \Omega < 2.0 \Omega$

• effective resistance =
$${}^{1}/_{Re}$$
 = ${}^{1}/_{R1}$ + ${}^{1}/_{R2}$
 ${}^{1}/_{Re}$ = ${}^{1}/_{6.0\,\Omega}$ + ${}^{1}/_{12\,\Omega}$
 ${}^{1}/_{Re}$ = 0.167 + 0.083
 ${}^{1}/_{Re}$ = 0.25
 R_{e} = ${}^{1}/_{0.25}$
 R_{e} = 4.0 Ω to 2 s.f.

• effective resistance =
$${}^{1}/_{Re}$$
 = ${}^{1}/_{R1}$ + ${}^{1}/_{R2}$ + ${}^{1}/_{R3}$
 ${}^{1}/_{Re}$ = ${}^{1}/_{2.0\,\Omega}$ + ${}^{1}/_{6.0\,\Omega}$ + ${}^{1}/_{12\,\Omega}$
 ${}^{1}/_{Re}$ = 0.50 + 0.167 + 0.083
 ${}^{1}/_{Re}$ = 0.75
 R_{e} = ${}^{1}/_{0.75}$
 R_{e} = 1.33 Ω or 1.3 Ω to 2 s.f.

A Summary of Series and Parallel Circuits

Important to Note #2:

Introducing a new resistor in parallel will reduce the value of the effective resistance, R_e, of the circuit, and hence increase the current through the main circuit.

For circuit A:

$$R_e = 4.0 \Omega$$

For circuit **B**:

• effective resistance =
$$^{1}/_{Re}$$
 = $^{1}/_{R1}$ + $^{1}/_{R2}$ $^{1}/_{Re}$ = $^{1}/_{6.0\,\Omega}$ + $^{1}/_{12\,\Omega}$ $^{1}/_{Re}$ = 0.167 + 0.083 $^{1}/_{Re}$ = 0.25 R_{e} = $^{1}/_{0.25}$ R_{e} = 4.0 Ω to 2 s.f.

$$R_e = 1.3 \Omega$$

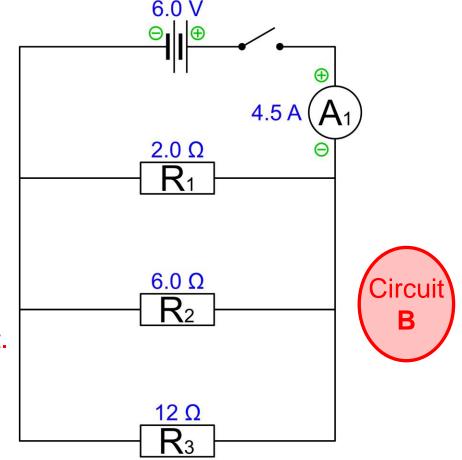
• effective resistance = $\frac{1}{R_e} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

For circuit **A**:

Current = 1.5 A

For circuit **B**:

$$Current = 4.5 A$$


$$^{1}/_{Re} = ^{1}/_{2.0 \,\Omega} + ^{1}/_{6.0 \,\Omega} + ^{1}/_{12 \,\Omega}$$

$$^{1}/_{Re} = 0.50 + 0.167 + 0.083$$

$$^{1}/_{Re} = 0.75$$

$$R_{e} = ^{1}/_{0.75}$$

$$R_{e} = 1.33 \,\Omega \text{ or } 1.3 \,\Omega \text{ to } 2 \text{ s.f.}$$

