Qualitative Analysis Part Two Anions & Gases

Qualitative Tests for Anions

Qualitative Analysis Which anions must I know the tests for?

Describe tests to identify the following anions:

- Carbonate CO_3^{2-} (by the addition of dilute acid and subsequent use of limewater).
- Chloride Cl⁻ (by reaction of an aqueous solution with nitric acid and aqueous silver nitrate).
- Iodide I[–] (by reaction of an aqueous solution with nitric acid and aqueous silver nitrate).
- Nitrate NO₃⁻ (by reduction with aluminium and aqueous sodium hydroxide to ammonia and subsequent use of litmus paper).
- Sulfate SO₄^{2–} (by reaction of an aqueous solution with nitric acid and either aqueous barium chloride or aqueous barium nitrate).

Singapore Examinations and Assessment Board University of Cambridge International Examinations Ministry of Education, Singapore

Test for Carbonate, CO₃^{2–}(aq): Addition of HNO₃(aq), Use of Ca(OH)₂(aq)

Sodium Carbonate + Nitric Acid \rightarrow Sodium Nitrate + Water + Carbon Dioxide Na₂CO₃(aq) + 2HNO₃(aq) \rightarrow 2NaNO₃(aq) + H₂O(*l*) + CO₂(g) $CO_3^{2-}(aq) + 2H^+(aq) \rightarrow CO_2(g) + H_2O(l)$

Test for Carbonate, CO₃^{2–}(aq): Addition of HNO₃(aq), Use of Ca(OH)₂(aq)

Calcium Hydroxide + Carbon Dioxide \rightarrow Calcium Carbonate + Water Ca(OH)₂(aq) + CO₂(g) \rightarrow CaCO₃(s) + H₂O(*l*) Ca²⁺(aq) + 2OH⁻(aq) + CO₂(g) \rightarrow CaCO₃(s) + H₂O(*l*)

Test for Chloride, Cl⁻(aq): Addition of HNO₃(aq) and AgNO₃(aq)

Test for Chloride, Cl⁻(aq): Addition of HNO₃(aq) and AgNO₃(aq)

Test for Chloride, Cl⁻(aq): Addition of HNO₃(aq) and AgNO₃(aq)

Test for Chloride, Cl⁻(aq): Addition of HNO₃(aq) and AgNO₃(aq)

Silver Nitrate + Sodium Chloride \rightarrow Silver Chloride + Sodium Nitrate AgNO₃(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO₃(aq) Ag⁺(aq) + Cl⁻(aq) \rightarrow AgCl(s)

Test for lodide, I⁻(aq): Addition of HNO₃(aq) and Pb(NO₃)₂(aq)

Test for lodide, I⁻(aq): Addition of HNO₃(aq) and Pb(NO₃)₂(aq)

Test for lodide, I⁻(aq): Addition of HNO₃(aq) and Pb(NO₃)₂(aq)

Test for lodide, I⁻(aq): Addition of HNO₃(aq) and Pb(NO₃)₂(aq)

Lead(II) Nitrate + Potassium Iodide \rightarrow Lead(II) Iodide + Potassium Nitrate Pb(NO₃)₂(aq) + 2KI(aq) \rightarrow PbI₂(s) + 2KNO₃(aq) Pb²⁺(aq) + 2I⁻(aq) \rightarrow PbI₂(s)

Test for lodide, I⁻(aq): Addition of HNO₃(aq) and AgNO₃(aq) (2014)

Test for lodide, I⁻(aq): Addition of HNO₃(aq) and AgNO₃(aq) (2014)

Test for lodide, I⁻(aq): Addition of HNO₃(aq) and AgNO₃(aq) (2014)

Test for lodide, I⁻(aq): Addition of HNO₃(aq) and AgNO₃(aq) (2014)

Silver Nitrate + Potassium Iodide \rightarrow Silver Iodide + Potassium Nitrate AgNO₃(aq) + KI(aq) \rightarrow AgI(s) + KNO₃(aq) Ag⁺(aq) + I⁻(aq) \rightarrow AgI(s)

Test for Nitrate, $NO_3^{-}(aq)$: Addition of NaOH(aq) and Al(s) or Zn(s)

Test for Nitrate, NO₃⁻(aq): Addition of NaOH(aq) and Al(s) or Zn(s)

Test for Nitrate, NO₃⁻(aq): Addition of NaOH(aq) and A*l*(s) or Zn(s)

Test for Nitrate, NO₃⁻(aq): Addition of NaOH(aq) and Al(s) or Zn(s)

Test for Nitrate, $NO_3^{-}(aq)$: Addition of NaOH(aq) and Al(s) or Zn(s)

Test for Nitrate, NO₃⁻(aq): Addition of NaOH(aq) and Al(s) or Zn(s)

 $3NO_3^{-}(aq) + 8Al(s) + 5OH^{-}(aq) + 18H_2O(l)$ \downarrow $3NH_3(g) + 8[Al(OH)_4]^{-}(aq)$

Test for Sulfate, $SO_4^{2-}(aq)$: Addition of $HNO_3(aq)$ and $BaCl_2(aq)$ or $Ba(NO_3)_2(aq)$

Test for Sulfate, $SO_4^{2-}(aq)$: Addition of $HNO_3(aq)$ and $BaCl_2(aq)$ or $Ba(NO_3)_2(aq)$

Test for Sulfate, $SO_4^{2-}(aq)$: Addition of $HNO_3(aq)$ and $BaCl_2(aq)$ or $Ba(NO_3)_2(aq)$

Test for Sulfate, $SO_4^{2-}(aq)$: Addition of $HNO_3(aq)$ and $BaCl_2(aq)$ or $Ba(NO_3)_2(aq)$

Barium Chloride + Sodium Sulfate \rightarrow Barium Sulfate + Sodium Chloride

Qualitative Analysis Why must the solutions be acidified?

• Imagine that a solution of aqueous silver nitrate were added to an aqueous solution of sodium carbonate. What would be observed?

The precipitation of silver carbonate:

- Silver Nitrate + Sodium Carbonate \rightarrow Silver Carbonate + Sodium Nitrate 2AgNO₃(aq) + Na₂CO₃(aq) \rightarrow Ag₂CO₃(s) + 2NaNO₃(aq)
- What erroneous conclusion might you draw from these observations?

The precipitate of silver carbonate could be mistaken for the precipitate of silver chloride.

• How does the addition of nitric acid avoid this erroneous conclusion?

The silver carbonate would react with the nitric acid to form a solution of silver nitrate:

Silver Carbonate + Nitric Acid \rightarrow Silver Nitrate + Water + Carbon Dioxide Ag₂CO₃(s) + 2HNO₃(aq) \rightarrow 2AgNO₃(aq) + H₂O(*l*) + CO₂(g) Therefore, a precipitate would only be observed if a chloride ion were present, and not a carbonate ion.

• Imagine that a solution of aqueous barium nitrate were added to an aqueous solution of sodium carbonate. What would be observed?

The precipitation of barium carbonate:

Barium Nitrate + Sodium Carbonate \rightarrow Barium Carbonate + Sodium Nitrate Ba(NO₃)₂(aq) + Na₂CO₃(aq) \rightarrow BaCO₃(s) + 2NaNO₃(aq)

• What erroneous conclusion might you draw from these observations?

The precipitate of barium carbonate could be mistaken for the precipitate of barium sulfate.

• How does the addition of nitric acid avoid this erroneous conclusion?

The barium carbonate would react with the nitric acid to form a solution of barium nitrate:

Barium Carbonate + Nitric Acid \rightarrow Barium Nitrate + Water + Carbon Dioxide BaCO₃(s) + 2HNO₃(aq) \rightarrow Ba(NO₃)₂(aq) + H₂O(*l*) + CO₂(g) Therefore, a precipitate would only be observed if a sulfate ion were present, and not a carbonate ion.

Why is *nitric* acid used to acidify the solution?

 When nitric acid reacts with another chemical, the resulting salt will be a *nitrate*, and *all nitrates are soluble in water*. Consequently, the formation of misleading, erroneous precipitates will be avoided.

• Alternatively, imagine using hydrochloric acid to acidify a reagent before adding silver nitrate. The precipitate of silver chloride is bound to appear, regardless of whether or not the unknown chemical that is being tested contains chloride ions: $AgNO_{3}(aq) + HCl(aq) \rightarrow AgCl(s) + HNO_{3}(aq)$

Alternatively, imagine using sulfuric acid to acidify a reagent before adding barium nitrate. The precipitate of barium sulfate is bound to appear, regardless of whether or not the unknown chemical that is being tested contains sulfate ions:
Ba(NO₃)₂(aq) + H₂SO₄(aq) → BaSO₄(s) + 2HNO₃(aq)

Summary – Test for Anions

Anion	Test	Test Result
Carbonate – CO ₃ ^{2–} (solid or aqueous)	Add dilute acid.	Effervescence observed, carbon dioxide produced (produces white ppt. with limewater).
Chloride – C <i>l</i> − (in aqueous solution)	Acidify with dilute nitric acid, then add aqueous silver nitrate.	White ppt.
lodide – I⁻ (in aqueous solution)	Acidify with dilute nitric acid, then add either aqueous lead(II) nitrate or aqueous silver nitrate.	Yellow ppt.
Nitrate – NO ₃ - (in aqueous solution)	Add aqueous sodium hydroxide, then aluminium foil, warm carefully.	Ammonia produced (turns moist red litmus paper blue).
Sulfate – SO ₄ ^{2–} (in aqueous solution)	Acidify with dilute nitric acid, then add either aqueous barium chloride or aqueous barium nitrate.	White ppt.

Qualitative Tests for Gases

• Ammonia – NH₃

ammonium salt + base \xrightarrow{heat} salt + water + ammonia NH₄C*l*(aq) + NaOH(aq) \xrightarrow{heat} NaC*l*(aq) + H₂O(*l*) + NH₃(g)

• If an unknown chemical reacts with a base, and ammonia gas is produced, then the unknown chemical maybe an ammonium salt.

nitrate + base + aluminium (or zinc) + water \downarrow_{heat}

sodium tetrahydroxyaluminate + ammonia

 $3NaNO_3(aq) + 5NaOH(aq) + 8Al(s) + 18H_2O(l)$ \downarrow_{heat}

 $8Na[Al(OH)_{4}](aq) + 3NH_{3}(g)$

• If an unknown chemical reacts with a base in the presence of aluminium or zinc powder, and ammonia gas is produced, then the unknown chemical maybe a nitrate.

Carbon dioxide – CO₂

acid + carbonate \rightarrow salt + water + carbon dioxide 2HNO₃(aq) + Na₂CO₃ \rightarrow 2NaNO₃(aq) + H₂O(l) + CO₂(g)

• If an acid is added to an unknown chemical, and carbon dioxide gas is produced, then the unknown chemical maybe a carbonate.

thermal decomposition of a carbonate $CaCO_3(s) \xrightarrow{heat} CaO(s) + CO_2(g)$

• If an unknown chemical decomposes on heating, and carbon dioxide gas is produced, then the unknown chemical maybe a carbonate.

• Chlorine – Cl_2

manganese(IV) oxide + hydrochloric acid manganese(II) chloride + water + chlorine $MnO_2(s) + 4HCl(aq) \rightarrow MnCl_2(aq) + 2H_2O(l) + Cl_2(g)$ sodium hypochlorite + hydrochloric acid sodium chloride + water + chlorine $NaClO(s) + 2HCl(aq) \rightarrow NaCl(aq) + H_2O(l) + Cl_2(g)$

Chlorine gas is produced when chloride ions are oxidised. In these reactions, oxidation is defined as the loss of electrons:
2Cl⁻(aq) → Cl₂(g) + 2e⁻

• Hydrogen – H₂

acid + reactive metal \rightarrow salt + hydrogen

 $H_2SO_4(aq) + Zn \rightarrow ZnSO_4(aq) + H_2(g)$

• If an acid is added to an unknown chemical, and hydrogen gas is produced, then the unknown chemical maybe a reactive metal.

More Reactive \rightarrow	Potassium	The
Less Reactive \rightarrow	Sodium Calcium Magnesium Aluminium Zinc Iron Lead → Hydrogen ← Copper Silver	Me <i>hydro</i> serie pi hydro rea faster <i>belo</i>

The Reactivity Series of Metals

Metals that are *above hydrogen* in the reactivity series *react* with acids to produce a salt and hydrogen gas. The more reactive the metal, the faster the reaction. Metals *below hydrogen do not react* with acids.

Oxygen – O₂

catalytic decomposition of hydrogen peroxide into water and oxygen $2H_2O_2(aq) \xrightarrow{catalyst} 2H_2O(l) + O_2(g)$

thermal decomposition of a nitrate $2Pb(NO_3)_2(s) \xrightarrow{heat} 2PbO(s) + 4NO_2(g) + O_2(g)$

 If an unknown chemical decomposes on heating, and oxygen gas is produced, then the unknown chemical maybe a nitrate. Note:
Some, but not all, nitrates decompose on heating to produce oxygen gas and nitrogen dioxide gas – which is reddish-brown in colour.

Sulfur dioxide – SO₂

acid + sulphite \rightarrow salt + water + sulfur dioxide 2HCl(aq) + K₂SO₃(aq) $\stackrel{\text{heat}}{\rightarrow}$ 2KCl(aq) + H₂O(l) + SO₂(g)

 If an acid is added to an unknown chemical and heated, and sulfur dioxide gas is produced, then the unknown chemical maybe a sulphite.

Describe tests to identify the following gases:

- Ammonia NH₃(g) (using damp red litmus paper).
 - Carbon dioxide $CO_2(g)$ (using limewater).
 - Chlorine $Cl_2(g)$ (using damp litmus paper).
 - Hydrogen H₂(g) (using a burning splint).
 - Oxygen $-O_2(g)$ (using a glowing splint).
- Sulfur dioxide $\frac{SO_2(g)}{(using acidified KMnO_4(aq))}$.

• Water vapour $- H_2O(g)$ (using anhydrous $CuSO_4(s)$ or $CoCl_2(s)$).

Singapore Examinations and Assessment Board University of Cambridge International Examinations Ministry of Education, Singapore

Qualitative Analysis Test for NH₃(g)

Qualitative Analysis Test for NH₃(g)

Ammonia is an alkaline gas which will turn moist red litmus paper blue.

Qualitative Analysis Test for CO₂(g)

Qualitative Analysis Test for CO₂(g)

Qualitative Analysis Test for Cl₂(g)

Chlorine is a greenish-yellow gas.

Qualitative Analysis Test for Cl₂(g)

Chlorine is an acidic gas which will turn moist blue litmus paper red...

Qualitative Analysis Test for Cl₂(g)

... before finally bleaching it white.

Hydrogen gas will **extinguish** a **burning** splint with a squeaky "pop" sound.

Oxygen gas will relight a glowing splint.

Qualitative Analysis Test for SO₂(g)

Sulfur dioxide gas will turn acidified potassium dichromate(VI) from orange to green. $K_2Cr_2O_7(aq) + 3SO_2(g) + H_2SO_4(aq)$ \downarrow $Cr_2(SO_4)_3(aq) + K_2SO_4(aq) + H_2O(l)$

Qualitative AnalysisTest for $H_2O(g)$ – anhydrous copper(II) sulfate

Water vapour will change the colour of anhydrous copper(II) sulfate from white to blue.

Qualitative AnalysisTest for $H_2O(g)$ – anhydrous copper(II) sulfate

Water vapour will change the colour of anhydrous copper(II) sulfate from white to blue.

Qualitative Analysis Test for H₂O(g) – anhydrous cobalt(II) chloride

Water vapour will change the colour of anhydrous cobalt(II) chloride from **blue** to **pink**.

Qualitative AnalysisTest for $H_2O(g)$ – anhydrous cobalt(II) chloride

Water vapour will change the colour of anhydrous cobalt(II) chloride from **blue** to **pink**.

Summary – Test for Gases

Gas	Test		
Ammonia – NH ₃ (g)	Turns damp red litmus paper blue.		
Carbon dioxide – $CO_2(g)$	Gives white ppt. with limewater (ppt. dissolves with excess CO ₂).		
Chlorine – $Cl_2(g)$	Bleaches damp litmus paper.		
Hydrogen – H ₂ (g)	Produces "pop" sound with a lighted splint.		
Oxygen – $O_2(g)$	Relights a glowing splint.		
Sulfur dioxide – SO ₂ (g)	Turns aqueous acidified potassium dichromate(VI) from orange to green. Turns aqueous acidified potassium manganite(VII) from purple to colourless.		
Water vapour – H ₂ O(g)	Turns anhydrous copper(II) sulfate from white to blue. Turns anhydrous cobalt(II) chloride from blue to pink.		

Summary – Properties of Gases

Colours			Odours	
Coloured	Colourless	~	Pungent	Odourless
Cl ₂	CO ₂	-	Cl ₂	CO ₂
greenish-yellow	H ₂		NH ₃	H ₂
	H ₂ O		SO ₂	H ₂ O
	NH ₃			O ₂
	O ₂			
	SO ₂			

Summary – Properties of Gases

Flammability		
Flammable	Non-flammable	
H ₂	Cl_2	
	CO ₂	
	H ₂ O	
	NH ₃	
	O ₂	
	SO ₂	

Summary – Properties of Gases

Acid-Base Nature		
Acidic	Alkaline	Neutral
Cl ₂	NH ₃	H ₂
CO ₂		H ₂ O
SO ₂		O ₂

Summary – Properties of Gases

Redox		
Oxidising	Reducing	Neither
Cl ₂	H ₂	H ₂ O
CO ₂	NH ₃	
O ₂	SO ₂	

Are gases only produced by reactions between two chemicals?

 Gases can also be produced when a solid is heated to a high temperature and undergoes thermal decomposition.

• Carbonates can decompose on heating to produce a *metal oxide* and *carbon dioxide*.

 $\begin{array}{ll} CaCO_{3}(s) \stackrel{\text{heat}}{\rightarrow} CaO(s) \ + \ CO_{2}(g) \\ \\ CuCO_{3}(s) \stackrel{\text{heat}}{\rightarrow} CuO(s) \ + \ CO_{2}(g) \\ \\ \\ \text{green solid} & \text{black solid} \end{array}$

 In general, the *lower* the metal is in the reactivity series of metals, the *lower* the temperature at which it will undergo thermal decomposition.

more reactive

less reactive

 $\mathsf{K} \leftrightarrow \mathsf{Na} \leftrightarrow \mathsf{Ca} \leftrightarrow \mathsf{Mg} \leftrightarrow \mathsf{Al} \leftrightarrow \mathsf{Zn} \leftrightarrow \mathsf{Fe} \leftrightarrow \mathsf{Pb} \leftrightarrow \mathsf{Cu} \leftrightarrow \mathsf{Ag}$

• The carbonates of relatively unreactive metals can decompose completely to produce the *elemental metal*, *carbon dioxide* and *oxygen*.

 $2Ag_2CO_3(s) \xrightarrow{heat} 4Ag(s) + 2CO_2(g) + O_2(g)$

• The products that are formed when a nitrate decomposes depend upon the reactivity of the metal.

 Nitrates of Group I metals decompose to produce the metal nitrite and oxygen.

 $2NaNO_3(s) \xrightarrow{heat} 2NaNO_2(s) + O_2(g)$

• The nitrates of less reactive metals decompose at *lower temperatures*, and also decompose *more completely*.

 $\begin{array}{l} {}^{2}\text{Pb}(\text{NO}_{3})_{2}(s) \stackrel{\text{heat}}{\rightarrow} {}^{2}\text{PbO}(s) \ + \ 4\text{NO}_{2}(g) \ + \ \text{O}_{2}(g) \\ & \text{reddish-brown gas} \end{array}$

$$\begin{array}{r} 2\text{AgNO}_{3}(s) \stackrel{\text{heat}}{\rightarrow} 2\text{Ag}(s) + 2\text{NO}_{2}(g) + \text{O}_{2}(g) \\ \text{reddish-brown gas} \end{array}$$

A dead body has been found on grassland. The autopsy report states that a large quantity of a clear and colourless solution was found in the victim's lungs. The coroner has reported that there are no visible signs of physical trauma to the victim's body. This evidence has lead to the initial conclusion that the victim was murdered by drowning. The victim's body was found within 2.7 km of five different water sources:

Sea water

- \rightarrow solution of NaCl(aq) and KI(aq)
- Slightly polluted river water
- \rightarrow solution of Na₂SO₄(aq) and K₂SO₄(aq)
 - Swimming pool water
 - \rightarrow solution of $Cl_2(aq)$
 - Natural spring water
 - \rightarrow solution of Na₂CO₃(aq)
 - Pool of agricultural waste
- \rightarrow solution of KNO₃(aq) and NH₄NO₃(aq)

You are the senior forensic scientist assigned to the murder investigation. As part of the investigation, you are required to identify the clear and colourless solution that was found in the victim's lungs. Based on your knowledge of analytical chemistry, suggest a unique qualitative test(s) to identify each water source.

• Possible test for sea water (aqueous solution of sodium chloride – NaCl(aq)):

Add an aqueous solution of silver nitrate to a sample of the seawater. A white precipitate of silver chloride will be observed. This confirms the presence of chloride ions in aqueous solution (all chlorides are soluble *except* silver chloride and lead(II) chloride):

 $\begin{array}{rl} \text{AgNO}_3(\text{aq}) \ + \ \text{NaC}l(\text{aq}) \ \rightarrow \ \text{AgC}l(\text{s}) \ + \ \text{NaNO}_3(\text{aq}) \\ & \text{Ag}^+(\text{aq}) \ + \ \text{C}l^-(\text{aq}) \ \rightarrow \ \text{AgC}l(\text{s}) \end{array}$

Note: A small amount of dilute nitric acid should be added to the white precipitate to ensure that it is *not silver carbonate*. Silver carbonate would react with the nitric acid to produce effervescence and the soluble salt silver nitrate:

 $2HNO_3(aq) + Ag_2CO_3(s) \rightarrow 2AgNO_3(aq) + H_2O(l) + CO_2(g)$

Note: Silver ions can be used to test for chloride ions and chloride ions can be used to test for silver ions.

 Possible test for slightly polluted river water
(aqueous solution of sodium sulphate – Na₂SO₄(aq) and potassium sulphate – K₂SO₄(aq)):

Add an aqueous solution of barium nitrate to a sample of the polluted river water. A white precipitate of barium sulphate will be observed. This confirms the presence of sulphate ions in aqueous solution (all sulphates are soluble *except* barium sulphate, calcium sulphate, lead(II) sulphate and silver sulphate):

 $\begin{array}{rl} \mathsf{Ba}(\mathsf{NO}_3)_2(\mathsf{aq}) \ + \ \mathsf{Na}_2\mathsf{SO}_4(\mathsf{aq}) \ \rightarrow \ \mathsf{Ba}\mathsf{SO}_4(\mathsf{s}) \ + \ 2\mathsf{Na}\mathsf{NO}_3(\mathsf{aq}) \\ \mathsf{Ba}(\mathsf{NO}_3)_2(\mathsf{aq}) \ + \ \mathsf{K}_2\mathsf{SO}_4(\mathsf{aq}) \ \rightarrow \ \mathsf{Ba}\mathsf{SO}_4(\mathsf{s}) \ + \ 2\mathsf{KNO}_3(\mathsf{aq}) \\ \mathsf{Ba}^{2+}(\mathsf{aq}) \ + \ \mathsf{SO}_4^{2-}(\mathsf{aq}) \ \rightarrow \ \mathsf{Ba}\mathsf{SO}_4(\mathsf{s}) \end{array}$

Note: A small amount of dilute nitric acid should be added to the white precipitate to ensure that it is *not barium carbonate*. Barium carbonate would react with the nitric acid to produce effervescence and the soluble salt barium

nitrate:

$2HNO_3(aq) + BaCO_3(s) \rightarrow Ba(NO_3)_2(aq) + H_2O(l) + CO_2(g)$

There would be no observed reaction if the white precipitate was barium sulphate.

Note: Barium ions can be used to test for sulphate ions and sulphate ions can be used to test for barium ions.

 Possible test for swimming pool water (aqueous solution of chlorine – Cl₂(aq)):

An aqueous solution of chlorine will turn blue litmus paper red, and then bleach it white.

Add an aqueous solution of potassium iodide to a sample of the swimming pool water. The clear and colourless (maybe very pale green/yellow) solution will change into an orange/brown solution of iodine:

 $\begin{array}{rl} 2\mathsf{KI}(\mathsf{aq}) \ + \ \mathsf{C}l_2(\mathsf{aq}) \ \rightarrow \ 2\mathsf{KC}l(\mathsf{aq}) \ + \ \mathsf{I}_2(\mathsf{aq}) \\ 2\mathsf{I}^-(\mathsf{aq}) \ + \ \mathsf{C}l_2(\mathsf{aq}) \ \rightarrow \ 2\mathsf{C}l^-(\mathsf{aq}) \ + \ \mathsf{I}_2(\mathsf{aq}) \end{array}$

The presence of iodine in solution can be confirmed by adding an aqueous suspension of starch to the mixture. The formation of a blue / black complex will be observed.

Note: lodide ions can be used to test for chlorine and chlorine can be used to test for iodide ions.

 Possible test for natural spring water (aqueous solution of sodium carbonate – Na₂CO₃(aq)):

Add dilute nitric acid to a sample of the spring water. Effervescence will be observed as carbon dioxide gas is produced:

 $\begin{array}{rl} 2\mathsf{HC}l(\mathsf{aq}) \ + \ \mathsf{Na}_2\mathsf{CO}_3(\mathsf{aq}) \ \rightarrow \ 2\mathsf{Na}\mathsf{C}l(\mathsf{aq}) \ + \ \mathsf{H}_2\mathsf{O}(l) \ + \ \mathsf{CO}_2(\mathsf{g}) \\ & 2\mathsf{H}^+(\mathsf{aq}) \ + \ \mathsf{CO}_3^{2-}(\mathsf{aq}) \ \rightarrow \ \mathsf{H}_2\mathsf{O}(l) \ + \ \mathsf{CO}_2(\mathsf{g}) \end{array}$

The presence of carbon dioxide should be confirmed by bubbling the gas through limewater. A white precipitate of calcium carbonate will be observed:

 $CO_2(g) + Ca(OH)_2(aq) \rightarrow CaCO_3(s) + H_2O(l)$

Note: Acids can be used to test for carbonates and hydrogencarbonates. Carbonates and hydrogencarbonates can be used to test for acids.

 Possible test for pool of agricultural waste (aqueous solution of potassium nitrate – KNO₃(aq) and ammonium nitrate – NH₄NO₃(aq)):

Add dilute aqueous sodium hydroxide to a sample of the agricultural waste. Gently warm the mixture over a Bunsen burner. The ammonium ions will react with the hydroxide ions to produce ammonia gas and water:

 $\begin{array}{rl} \mathsf{NH}_4\mathsf{NO}_3(\mathsf{aq}) \ + \ \mathsf{NaOH}(\mathsf{aq}) \ \rightarrow \ \mathsf{NaNO}_3(\mathsf{aq}) \ + \ \mathsf{NH}_3(\mathsf{g}) \ + \ \mathsf{H}_2\mathsf{O}(l) \\ & \mathsf{NH}_4^+(\mathsf{aq}) \ + \ \mathsf{OH}^-(\mathsf{aq}) \ \rightarrow \ \mathsf{NH}_3(\mathsf{g}) \ + \ \mathsf{H}_2\mathsf{O}(l) \end{array}$

The presence of ammonia gas can be confirmed by holding a strip of moist red litmus paper in the mouth of the test tube. The alkaline ammonia gas will turn the moist red litmus paper blue.

• Why is it not possible to test for the nitrate ion, NO_3^- , in the presence of the ammonium ion, NH_4^+ ? Hint: Think about the observations that are made when testing for each ion.

Presentation on Qualitative Analysis Part Two: Anions and Gases by Dr. Chris Slatter christopher_john_slatter@nygh.edu.sg

Nanyang Girls' High School

2 Linden Drive Singapore 288683

21st August 2015

